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Popular Summary

There are a number of satellites in orbit now that are used to produce global maps of rainfall.
The satellites that orbit closest to the earth produce the most accurate estimates of rain
amounts, but they generally fly over any given spot on the earth only about once per day.
(The Tropical Rainfall Measuring Mission satellite (TRMM) is one such satellite). The data
these "low-flying" satellites provide can therefore only be used to calibrate the estimates
provided by the more distant satellites, which are less accurate but view the earth almost
continuously; or the satellite data can be averaged over many visits to give some information
about the average rainfall in each area.

The methods used by the satellites to make their rain estimates are quite indirect. Itis
important that they be checked against direct observation of rainfall from instruments on the
ground. Ground-based radar systems provide useful information about rainfall over large
areas, but the methods used by radar to make quantitative estimates of rainfall suffer from
the fact that radars, too, observe rain from a distance. Rain gauges, on the other hand,
measure rainfall directly, but only over an area the size of a dinner plate. The errors rain
gauges make are fairly well understood, and so, except for their limited coverage, they are
ideal for checking the satellite estimates. Comparison of satellite estimates with rain-gauge
measurements is often frustrating, however, because satellites can at best attempt to measure
rain amounts over areas many kilometers in diameter around a gauge, whereas rain gauges
can only record what falls in an area some tens of centimeters in diameter.

This paper investigates the "noisiness"” in the comparisons of satellite and gauge rain
estimates due to the very different observational characteristics of the two: the satellite
catches glimpses of large areas at infrequent intervals, whereas rain gauges record what
happens in small areas continuously. A statistical model used in some earlier studies of
TRMM is shown to be particularly relevant to addressing this question. It captures both the
high variability of rain from place to place and moment to moment, and also how the level of
variability diminishes when rain is averaged over area or over time. The model verifies that
comparison of what a satellite sees at the moment it flies over a gauge with what the gauge
records during an interval of time around the satellite’s visit is indeed very noisy, but that
there is a best choice for the time interval of gauge observations that should be used in the
comparison. It shows, not surprisingly, that the comparisons get better when there is more
than one gauge in the vicinity, but that there is still an optimal time interval of gauge data
around the satellite overflight time that should be used. The optimal interval shrinks as the
number of gauges increases.

The paper also shows that when only a few gauges are available, many months of averaging
of both the satellite data and the gauge data are needed to reduce the noise levels in the
comparisons of the two averages to tolerable levels, and, somewhat surprisingly, that on
these time scales the satellite data over an area hundreds of kilometers around the gauge(s)
should be averaged to reduce the noisiness of the comparisons to the lowest possible level--
rather than using only satellite data taken as close to the gauge(s) as possible. It also shows
that there are more complicated ways of averaging the gauge data that will improve the
quality of the satellite/ gauge comparison still further. These results should be helpful in
choosing the most informative way to check satellite data with data from rain gauges.
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Abstract. Validation of satellite remote-sensing methods for estimating
rainfall against rain-gauge data is attractive because of the direct nature of
the rain-gauge measurements. Comparisons of satellite estimates to rain-
gauge data are difficult, however, because of the extreme variability of rain
and the fact that satellites view large areas over a short time while rain
gauges monitor small areas continuously. In this paper, a statistical model
of rainfall variability developed for studies of sampling error in averages of
satellite data is used to examine the impact of spatial and temporal averaging
of satellite and gauge data on intercomparison results. The model parameters
were derived from radar observations of rain, but the model appears to
capture many of the characteristics of rain-gauge data as well. The model
predicts that many months of data from areas containing a few gauges are
required to validate satellite estimates over the areas, and that the areas
should be of the order of several hundred km in diameter. Over gauge arrays
of sufficiently high density, the optimal areas and averaging times are reduced.

The possibility of using time-weighted averages of gauge data is explored.

1. Introduction

Satellites are the only practicable means of monitor-
ing rainfall on a global scale, but remote-sensing meth-
ods used to estimate rainfall from space-borne instru-
ments are inexact. Quantitative use of the satellite
products requires that they be accompanied by esti-
mates of their accuracy, and along with the decades-
long effort to improve satellite rain estimates there has
been a parallel effort to compare the estimates from
space with more direct observations taken from the
ground in order to determine the error characteristics of
the satellite estimates whenever possible. An especially
extensive set of such studies of satellite algorithms is
reviewed by Ebert et al. {1996].

Since satellite-instrument estimates are inherently

limited by the resolution of the instrument, loosely re-
ferred to here as the field of view (FOV), the satellite
estimates represent rain rates averaged over areas of the
order of the instrument resolution in size [see, for exam-
ple, Olson, 1989], with additional blurring because the
satellite estimate actually depends on the state of the
column of atmosphere above the FOV-sized area rather
than on the rain rate at the surface. Verifying such
estimates with ground observations requires that accu-
rate estimates of rain averaged over FOV-sized areas be
provided. Hydrologists have been grappling with this
type of problem since well before the needs for satellite
verification arose, and it is a notoriously difficult one.
There are many ground-based approaches to esti-
mating area-averaged rain rate. Many involve remote-
sensing methods such as radar. We will principally
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concern ourselves here with estimates made with rain
gauges. Rain gauges have the advantage that they mea-
sure rain in a fairly direct manner, and the errors they
make are generally easily understood and to a consider-
able extent rigorously quantifiable. They are relatively
inexpensive to deploy and are located at many sites
around the world. Aside from all the mishaps to which
any mechanical or electrical apparatus left outdoors is
prone, they have the major disadvantage that they mea-
sure only what is falling within an area a few tens of
centimeters in diameter. Inferences about what might
have fallen in the tens of square kilometers around the
gauge can only be made to the extent that what the
gauge encounters is representative of what happened in
the surrounding area.

Rain rates vary rapidly in time and space on the scale
of human perceptions, as anyone who has watched rain
falling over a large flat open area can attest, and the
same can be said for both the larger scales accessible
to radars and satellites and the smaller scales explored
with acoustical and optical instruments. What a rain
gauge measures can therefore represent what has oc-
curred in its neighborhood only in an average sense at
best. This question has been investigated by setting
out arrays of rain gauges and comparing the rain totals
obtained by each gauge. Gradients in the rain totals
can sometimes persist and be explained by local topo-
graphic and meteorological influences. See, for just a
few of many examples, Court [1960] and Wood et al.
[2000]. The representativeness of each rain gauge must
therefore be examined carefully for such influences.

The problem of how well a gauge average agrees
with the average rainfall in its vicinity has been ex-
tensively studied theoretically as well as empirically.
Examples of such studies include Rodriguez-Iturbe and
Mejia [1974a, b}, Silverman et al. [1981], and Morrissey
et al. [1995]. A particularly interesting and extensive
empirical study was carried out by Rudolf et al. [1994).
They showed that the rms difference of the gauge aver-
age from the true areal average appeared to depend in
a simple way on the number of gauges in the area. A
theoretical argument for a dependence similar to what
they found is given by McCollum and Krajewski [1998),
who also investigated the error levels in averages of rain-
gauge data used to estimate areal monthly averages
as a function of spatial correlation of the rain-gauge
data. Krajewski et al. {2000] used rain-gauge correla-
tions found in U.S. data to make quantitative estimates
of error levels for areal averages of such data.

In comparing the average rain rate seen by gauges to
the average of satellite estimates made in the vicinity

of the gauges, a number of questions arise:

¢ How much disagreement between the two aver-
ages is attributable to the fact that a gauge sees
a very small area continuously, whereas the satel-
lite sees a very large area around the gauge only
intermittently?

o What is the best time interval over which to com-
pare the two averages?

e Over what area around the gauge(s) should the
satellite averages extend?

o If the gauge data. are available as a function of
time (e.g., minute by minute, hour by hour),
would it be better to use time-weighted averages
of the gauge data with weightings determined by
the overflight times of the satellite?

The answers to these questions are not usually obvi-
ous. An important aspect of these problems is that rain
statistics change depending on how the data are aver-
aged. Daily rain-gauge data are correlated over shorter
distances than monthly rain data, as can be inferred,
for example, from the correlation lengths of order 101~
102 km seen for daily rainfall by Abtew et al. [1995]
and Ciach et al. [1997], as opposed to the correlation
lengths of many hundreds of kms seen for monthly rain-
fall by Mooley and Ismail [1982] and Morrissey [1991].
Small-area averages of radar-derived rain rates are cor-
related over shorter times than large-area averages, as
was shown, for example, by Laughlin [1981]. Determin-
ing the answers directly from data without the aid of
a statistical model can be frustrating because of the
inherent noisiness of rain statistics, so that extremely
long averaging times are required in order to get stable
results.

One important issue in the comparison of satellite
averages to averages of rain-gauge data that is not ad-
dressed by the above questions is the error inherent in
the satellite estimates themselves, due to all the prob-
lems associated with remote sensing. This is discussed,
for example, by Berg and Avery [1995].

A number of theoretical studies of the problem of
comparing averages of satellite rain estimates with av-
erages of data from one or more gauges have been car-
ried out. The studies by North and Nakamoto [1989],
North et al. [1994], and Yoo et al. [1996], for example,
use stochastic models in which time and space scales
are interrelated. In earlier studies, error levels in satel-
lite/gauge comparisons were estimated for specified av-
eraging areas and time intervals. In this paper we shall
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explore how they change with area and time. The ques-
tions posed above will be examined with the aid of a
model of rainfall statistics that was primarily devel-
oped for studies of sampling errors in monthly averaged
satellite estimates of rainfall [Bell and Kundu, 1996,
hereinafter BK96]. It is able to describe the changes
in rainfall statistics with averaging times and averag-
ing areas mentioned above to an impressive degree, and
is therefore in that respect well suited to the study of
these problems. Only second-order moment statistics
of rain (variances, correlations) are described by the
model, however, and the model cannot address prob-
lems having to do with the higher-moment statistics of
rain without additional assumptions.

Section 2 describes a framework for investigating how
much satellite and gauge averages tend to differ due to
their different observational characteristics. Section 3
describes the statistical model used in the study and its
ability to handle different time and space scales. Sec-
tion 4 explores a number of different averaging schemes
and shows that there is often an optimal scale for com-
parison. Section 5 raises the possibility of using time-
varying weighted averages of gauge data to help reduce
sampling error in satellite-gauge comparisons. The re-
sults are discussed in section 6. Mathematical details
of some of the calculations are given in two appendices.

2. Comparing Satellite and Gauge
Averages

Comparisons of single, “instantaneous,” coincident
observations by satellites and rain gauges tend not to
be very informative since, as we shall see, their very dif-
ferent sampling characteristics introduce too much un-
certainty into the comparison. In addition, the instan-
taneous satellite estimates for single FOVs are them-
selves commonly believed to have errors of order 50%
or more [see, for example, Wilheit, 1988; Olson et al.,
1996]. (Errors in satellite estimates for the average rain
rate in a FOV will be referred to here as retrieval er-
rors.) The goal in comparing averages of satellite rain-
rate estimates to averages of rain-gauge data is finding
evidence (or lack of it) for bias in the satellite estimates.

Biases in satellite estimates cannot be represented by
a single number. They almost certainly vary with the
kinds of rain being observed, the amounts, and a host of
meteorological and climatological factors that will take
long and patient research to unravel. The most infor-
mative comparisons of satellite and gauge averages will
therefore be ones where just enough averaging is done
to reduce the variability in the differences due to ran-
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dom sampling and retrieval error to a level where resid-
ual bias is detectable at a certain desired level. Large
datasets consisting of long sequences of satellite obser-
vations in the neighborhood of rain gauges and the ac-
companying gauge data will need to be broken down
into comparisons of subsets of observations, and indica-
tions of apparent bias examined for patterns that might
indicate problems with the satellite retrievals in certain
situations. For example, if the bias seemed to vary with
the amount of stratiform precipitation, such a depen-
dence might be revealed by comparing the biases seen
in low-stratiform-amount and high-stratiform-amount
cases. For this to be an effective approach the averag-
ing must be sufficient to bring out the bias; but not so
great that it reduces the dataset to too few cases.

As mentioned above, we expect averages of satellite
data and of rain-gauge data to differ because they each
include data that the other does not, referred to here
as sampling error. There are also a number of other
reasons the two averages might differ: the rain may not
fall with equal probabilities at different times of the day,
for example, or the mean rainfall may differ at different
points (e.g., in hilly areas or near coasts). To the ex-
tent possible, the averages of the data must be adjusted
to reduce the error due to these inhomogeneities to an
acceptable level.

Let us first consider a simple example of the kinds
of satellite/gauge comparisons one might wish to inves-
tigate, the difference between the average of satellite
FOV estimates made in the neighborhood of a gauge
during a single overflight of the gauge by the satellite
and the average rain rate recorded by the gauge in a
time interval bracketing the overflight time. Assume
that the satellite overflight time occurs at ¢ = 0 and
that the rain gauge is located at position x = 0, with
x = {z,y}. The average rain rate seen by the gauge
over a time interval T is

Ry = Re(x =0) W
with /2
1
Rr(x)= /_ SO0 @)

where R(x,t) is the rain rate at point x at time ¢, and
the rain rate over the gauge orifice has been approxi-
mated by the rain rate at the point x = 0.

The satellite, on the other hand, is treated as pro-
viding an estimate of the average rain rate over an area
A at time t = 0,

Rs=Ra(t=0) (3)



Figure 1. Comparison of average rain rate over a pe-
riod T observed by a gauge located at the center of an
area A of radius a, when the area A is observed at ¢t = 0
by a satellite.

with 1

Ra(t)= = / d*x R(x,t) (4)

AJa

where A is a circle of radius a with area A = 7a2.
See the illustration in Figure 1. It would of course be
possible to include several gauges and/or many satellite
overflight times in the above averages, or to average over
a rectangular area instead of a circular area. We will
return to these questions later.

The satellite can only provide an estimate of R, in
(3) as an average of the FOV estimates that fall within
the circular area A. When the area A4 is comparable
in size to an FOV, the precise location of the gauge
within the FOV matters. As we shall see later, however,
our analysis suggests that averages over relatively large
areas around the gauge are preferable, and, anticipating
that, we will ignore the complication of specifying where
the gauge is on the scale of satellite FOVs.

A bias in the satellite estimates is identified when the
difference

AR=R, - R; (5)
is larger than can be accounted for by the sampling dif-

ferences of the two systems or by random retrieval and
measurement errors. If there is no bias in the estimates,

AR should, on average, be zero. In order to test for the
presence of a bias, we require an estimate of the random
error components in AR. The mean squared difference
of the averages is a useful measure of the error levels in
the difference, defined as

(Ri - RpY)

2 2 2
Osamp + Oerrs + Oerrg » (6)

0.2

where R, and Ry are the satellite and gauge estimates of
R and Ry in (3) and (1), respectively, with (unknown)
estimation errors included; where the error variances in
(6) are defined as

U:amp = <(R; - R/g)2) ' (7)
aezrr,s = <('R; - R;)2> s (8)
ofrr,g = ((R; - ng)2) ] (9)

and where the angular brackets indicate an average over
an ensemble of meteorological situations similar to the
one for which we are trying to estimate o2, and the
primes indicate deviations from the ensemble mean; i.e.,
R’ = R—(R). In writing equation (6) it is implicitly as-
sumed that sampling errors due to non-overlapping cov-
erage, satellite retrieval errors, and gauge measurement
errors are uncorrelated with each other. It is difficult
to think of a plausible physical mechanism that would
produce such correlations, but if reason were found to
expect it, corrections for the cross-correlation effects
would have to be added to the right-hand side of (6).

A typical comparison of satellite estimates with gauge
averages results in a scatter plot of the satellite averages
versus the gauge averages for the same areas and time
periods. The quantity ¢ in equation (6) is a measure
of the amount of scatter about the “ideal” 45° line on
which the points would lie if the satellite estimates were
perfect and the gauge averages gave the true rain rate
over the area sampled by the satellite. In this paper we
will concentrate on estimating the sampling error term
in (6) based on models of the statistics of the “true”
surface rain rates being estimated by the satellite and
the gauge. Because a considerable amount of averaging
(large A and T') is needed to reduce the error variance o2
to acceptable levels, the contributions to ¢% by random
retrieval and measurement errors represented by o2,
and o2, ; tend to be considerably reduced, so that o2
is dominated by a;mp, but this needs to be checked for
each validation study.

If a good estimate of ¢ can be obtained, one can con-
clude that if |AR| > 20, there is a strong probability
(~ 95%) that a bias exists—always assuming that in-
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homogeneities in the rain statistics have been compen-
sated for and that the gauge data are accurate. The
estimated bias in the satellite estimate would be

Satellite bias = AR+ o, (10)

with “one-sigma” confidence limits. In the analyses that
follow, determination of bias at the 10% level is used as
a reasonable goal, i.e., Osamp < 0.1 R, where R is the
mean rain rate in the locality.

The sampling error variance defined in (7) can be
written in terms of the space-time covariance of rain
rate,

e(r,7) =

which is assumed to depend only on the separation of
the points {r,7}. If (1) and (3) are substituted into the
definition for o2, ., in (7), we can use (11) to write (7)
as

(Ri(x+r,t+17)R(x,1)), (i1)

a:amp = Cos + Cgg — 20C5g (12)
with
Css = <(R;
= = /d2x1/d2x2 e(x; —x2,0), (13)
Ceg = {(R
T/2 T/2
= / dtl/ dtZC O t, — tﬁ) ) (14)
T/2 T/2
and
Csg = (R; ,)
T/2 .
= — dt/d xe(x, t) 15
AT/T/2 ( 19)

In the next section we describe a model for the rain-
rate covariance (11) that was developed to estimate the
sampling error in monthly averages of satellite data for
a given area relative to the true monthly average that
would have been obtained if the satellite were capable of
continuous observation of the area. The model parame-
ters were adjusted to fit the statistics of radar data over
oceanic sites during two field campaigns, the Global At-
mospheric Research Program (GARP) Atlantic Tropi-
cal Experiment (GATE) and the Tropical Ocean Global
Atmosphere (TOGA) Coupled Ocean-Atmosphere Re-
sponse Experiment (COARE). Given such a model, cal-
culations of sampling error of satellite/gauge compar-
isons like the one described above can be carried out.
These will be discussed in the following sections.
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3. Spectral model of rain-rate covariance

The model is described in BK96. Its four parame-
ters characterize the space-time covariance of rain rate
(11) needed for calculations like the one described in the
previous section. It captures an aspect of rain behav-
ior that is not always represented in statistical models
of rain: time scales of variations in area-averaged rain
rate become longer as the area is increased, and spatial
correlations of time-averaged rain become longer as the
time interval is lengthened. This phenomenon is par-
tially captured by statistical models describing rain as
randomly created cells, within which daughter cells are
grown randomly, which in turn themselves grow daugh-
ter cells, etc., with faster and faster time scales and
smaller and smaller spatial scales [e.g., Rodriguez-Iturbe
et al., 1987; Smith and Krajewski, 1987). The present
model was originally motivated by a model developed
by Bell [1987] that used spectral methods to establish
the space-time statistics of the rain being modeled. It is
in some respects a generalization of the diffusive model
of North and Nakamoto [1989)].

Although the model is described in detail in BK96,
we review it briefly here in order to introduce the pa-
rameters needed for the computations. The space-time
covariance of point rain rates (11) is expressed in terms
of the Fourier transform in space and time of a spectral
power function,

o 00 o0
e(x,7) = (2m)73? / dw f dk, / dk,
—_00 -0 -0
x etk x—wnak W), (16)

where k is a 2-dimensional wavevector {k.,ky}. The
spectral power is given in this model by

. Fo
é(k, w) A (17)
To
T 1+ k202 (18)

with k = |k|. The timescale for fluctuations with spatial
wavelength 27 /k is 7. It gets longer as the wavelength
gets larger, approaching 7o for wavelengths longer than
Lg. Spatial fluctuations in the model tend not to be
correlated beyond Lo and temporal variations tend not
to be correlated longer than 7p. Spatial variability at
small scales increase as the exponent v becomes more
negative. See BK96 for details about the motivation
and interpretation of the model.

The model requires 4 parameters in order to specify
it completely: v, v, Lg, and 79, with v, defined for
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convenience by

Fo=+/2/aT(1 +v)(Li/o)0 (19)

where I'(n) is the Euler gamma function. Model param-
eters were obtained in BK96 that best fit the statistics of
radar-derived rain-rate maps over the eastern Atlantic
produced in GATE.

Kundu and Bell [2003] recently obtained model fits
to radar-derived rain data collected over an area in
the western tropical Pacific during TOGA COARE.
Radar observations were used from two ships designated
“MIT” and “TOGA” during three cruises, each provid-
ing- about three weeks of data. Dats used from the
cruises spanned the periods

Cruise 1: 11 Nov - 10 Dec 1992,
Cruise 2: 15 Dec 1992 - 18 Jan 1993, (20)
Cruise 3:

23 Jan - 23 Feb 1993.

Separate sets of parameters were obtained for each ship
for each cruise. The parameter values for which the
model best fits the data statistics are given in Table 1.

Since the model parameters in Table 1 were obtained
from gridded radar data with grid spacings of 4 km for
GATE and 2 km for TOGA COARE and covering a
time period of 2-4 weeks, it is not obvious that the
model can successfully describe the smaller scale statis-
tics of rain-gauge data nor the statistics of long time
averages of gauge data, although it does quite well at
fitting the data over the range of scales available in the
radar data. To investigate the model’s behavior on dif-
ferent scales, its predictions for the spatial correlation of
time-averaged gauge data can be obtained by using an
equation like (14) with “0” replaced by the separation
of the two gauges. A formula for the spatial correlations
is given in Appendix A in equation (A23).

Figure 2 shows the spatial correlations for 15-min-
averaged gauge data predicted by the model using pa-
rameter values in Table 1. As can be seen from Fig-
ure 2, the model with TOGA COARE parameters pre-
dicts correlation lengths ranging from about 6 km to
13 km, whereas the GATE parameters predict a corre-
lation length of about 33 km. There were unfortunately
not enough gauges deployed during TOGA COARE and
GATE to test these predictions against actual gauge
data. The TOGA COARE correlation lengths are com-
parable to what were found for a gauge array near Mel-
bourne, Florida, by Habib et al. [2001], who found cor-
relation lengths of about 4-5 km for 15-min-averaged
gauge data for August-September 1998.

Model Predictions for Gauge Correlations (T = 15 min)

0.8

e
o

Correlation
o
e

0.2

Separation (km)

Figure 2. Predictions of spatial correlations of 15-min-
averaged gauge data by spectral model using parameter
values in Table 1.

(It is interesting to note that the model also predicts a
fictitious “nugget” effect when TOGA COARE param-
eters are used, in the sense that an exponential fit to the
model spatial correlations is improved if the exponen-
tial fit has the mathematical form 7, exp(—s/dg) with
ro < 1. The model correlations with TOGA COARE
parameters suggest values of 0.90 < g < 0.99.]

On the other hand, correlations of monthly averaged
gauge data (Figure 3) are predicted by the model to
have spatial correlation lengths of about 50-80 km for
TOGA COARE and about 150 km for GATE. Again,
gauge statistics for these cases are unavailable, but Kra-
Jjewski et al. [2000] found correlation lengths of order
200-460 km for summertime monthly averages from 14
U.S. gauge arrays, and Morrissey [1991] found correla-
tion lengths of order 500 km for Pacific atoll rain gauges,
perhaps a factor of 2 larger than what the model with
the parameter values in Table 1 predicts. This sug-
gests that the effects of large-scale variations in rainfall
occurring over periods of a month or more are, not sur-
prisingly, underestimated in the statistics for 3-4 weeks
of radar data such as were used in obtaining the param-
eters in Table 1. Predictions using the model with the
parameters in Table 1 must therefore be tempered by
these considerations. We will return to this issue in the
discussion at the end.



Comparing Satellite and Gauge Rain Estimates

Table 1. Parameter Values for Rain-Rate Covariance Model.

Dataset Yo (mm?h~?) v Ly (km) 70 (h) R (mmh~!) o¢% (mm?h~?)
GATE Phase 1 1.0 -0.11 104. 17.6 0.50 0.461
TOGA Cruise 1 0.067 —0.335 94.06 8.30 0.139 0.039
MIT Cruise 1 0.086 —0.297 73.89 8.64 0.134 0.032
TOGA Cruise 2 0.616 —0.239 53.81 9.56 0.351 0.127
MIT Cruise 2 0.206 —0.205 70.40 13.43 0.229 0.062
TOGA Cruise 3 0.127 —0.290 61.04 12.20 0.155 0.035
MIT Cruise 3 0.180 —0.259 64.94 9.71 0.200 0.052

Parameters for the model spectrum, defined in (16), (17), and (18), from fits to radar data from Phase I of
GATE and from the ships MIT and TOGA during the three TOGA COARE cruises listed in (20). Average
rain rate for each dataset and model-predicted variance of area-averaged rain rate for a 314-km-diameter circle
with the same area as a 2.5° x 2.5° square are given in the last two columns.

Model Predictions for Gauge Correlations (T = 1 month)

1 T T T T T T T

Correlation

0 50 100 150 200 250 300 350 400
Separation (km)

Figure 3. Predictions of spatial correlations of
monthly averaged gauge data. Note change of scale of
abscissa from Figure 2.

4. Sampling Errors for Validation

In this section we will explore the behavior of sam-
pling error in the differences between satellite observa-
tions over an area surrounding one or more gauges for
various averaging times T and averaging areas A. All
of the calculations are done using circular areas rather
than using square, grid-box shaped areas. The differ-
ence in the results should be very small if the areas are
equal in magnitude. For example, the last column of
Table 1 shows the variance of area-averaged rain rate
calculated from the model for each set of parameters
listed in the table for a 314-km-diameter circle, using
(A9). At the equator, a 2.5° x 2.5° square box has
the same area as the circle. When variances of area-
averaged rain rate are calculated for the square area
they are found to be smaller than the values for the
circle by only about 1.5%.

4.1. Single Satellite Overflight, Single Gauge

As a first example, consider the problem of compar-
ing an average of satellite estimates from a single over-
flight of an area A with an average rain rate seen by a
gauge over an interval of time T bracketing the over-
flight time of the satellite, as sketched in Figure 1. The
rms difference osamp between the two averages can be
calculated using (12) and the model covariance (16).
Results for gsamp/R are plotted in Figure 4 using the
GATE model parameters from Table 1. A number of
conclusions are illustrated by this figure: 1) Compar-
isons of a single-gauge average with one satellite pass
are, not surprisingly, extremely noisy, as evidenced by
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Figure 4. Model predictions of relative sampling error
for comparisons of a single satellite overflight over an
area A of radius a to a gauge average over an interval
T bracketing the overflight time, as depicted in Figure
1.

relative errors considerably larger than 100%, no mat-
ter what the averaging time T. 2) The comparisons
become less noisy as the area averaged over increases.
3) Less obviously, for a given area A there is an optimal
accumulation interval T for the gauge, and 7 increases
as the satellite averaging area A increases.

These sampling error results depend on the rain
statistics. Model predictions (not shown) for Tsamp/R
are considerably higher when the TOGA COARE pa-
rameter values in Table 1 are used, especially for the
smaller areas A. This is largely due to the fact that the
TOGA COARE statistics suggest higher spatial vari-
ability at small scales than for GATE, as evidenced by
the larger negative values of the exponent v in Table 1.

4.2. Single Satellite Overflight, Gauge Array

As a second example, consider the problem of com-
paring a satellite average over an area A where an array
of gauges is present, thus providing a better estimate of
the area-averaged rain rate in A than a single gauge
can. In such a case, the gauge average in equation (1)
is replaced by the n-gauge average

Fog = 03 Rr(x), (1)

where the locations of the n gauges are specified by the
positions x;, ¢ = 1,...,n. We must then calculate an
expression like (7) with Ry replaced by R,;. The term

- 126 km o ————- 314 km —————p
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Figure 5. Idealized distribution of gauges with a den-
sity similar to that of the Oklahoma Mesonet. Inter-
gauge distance is 39 km. a) Circular area with a = 63
km with same area as a 1° x 1° grid box (9 gauges); and
b) circular area with a = 157 km with same area as a
2.5° x 2.5° grid box (49 gauges).

Cgg 1s replaced by the double-sum expression

1
n?

(Rr(x)Rr(x;)),  (22)

1

Cng,ng =

n
i=

n
1 j=

which can be calculated from the spectral model using
the covariance ¢y (|x; — x;|), an expression for which is
obtained in Appendix A (equation A23). Likewise, the
cross-term cgg in (7) is replaced by the n-gauge expres-
sion

g = = S (RARG(x0) (29)

i=1

which can be calculated from the model using the co-
variance car(|x;|) given by (A20) in Appendix A.

As an example of such a situation, consider the sort
of comparisons that might be possible over the Okla-
homa Mesonet described by Brock et al. [1995]. About
100 gauges are distributed over an approximate 3° x 5°
area, with an average inter-gauge distance of about 40
km. Suppose satellite estimates over grid-box areas
of order 1° x 1° or 2.5° x 2.5° are compared to aver-
ages of data from gauges within these areas. In order
to make the model calculations easier, we consider an
idealized version of this problem in which gauges are
equally spaced within circular disks with the same area
as the grid boxes, i.e., with radii a = 63 km and ¢ =
157 km respectively. Figure 5 shows a sketch of the ar-
eas with the assumed gauge positions marked. Based
on this configuration, the sampling error for comparison
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of a single overflight of the array by a satellite can be
computed using the n-gauge analogue to equation (12),

Uis,samp = Css + Cng,ng — 2Cs;ng (24)

using expressions (22) and (23). Relative sampling er-
rors for comparisons over the two areal sizes are shown
as smooth curves in Figure 6 as a function of the gauge
averaging time T, calculated using the GATE model
parameters. The optimal gauge averaging time for the
larger area grid box containing 49 gauges is predicted
to be about 1 h, and relative error for the comparison is
30%, much lower than for the single-gauge comparisons
shown in Figure 4, as expected. The same averaging
time, 1 h, is best for the 1° x 1° box, though with much
larger comparison errors.

When the same calculations are done with TOGA
COARE model parameters (not shown), the compar-
ison errors for regularly spaced gauge arrays are pre-
dicted to be larger than 100%, and the optimal averag-
ing time increases to several hours.

4.3. Single Satellite Overflight, Random Gauges

It is interesting to investigate how sensitive the re-
sults are to the idealized spacing used in the previous
example. It is quite easy to calculate the average of
aﬁg,samp over all possible configurations of the n gauges
within the area A allowing each of the positions x; to
be arbitrarily assigned within A. Averaging over ev-
ery possible configuration is equivalent to acting on ex-
pressions (22) and (23) with the averaging operation
(1/A) [, d*x; for each gauge i. Except for the terms in-
volving [R%(x;)]?, this is equivalent to replacing Rr(x;)
for each gauge by R4r, the space-time average of rain
rates everywhere within A over the interval T, as de-
fined in equation (A3) in Appendix A. For cpgng One
obtains

0% — 04T

(cng,ng)x = 047 + E— (25)

with the bracket operation on the left hand side indicat-
ing an average over gauge locations, and with ¢Z and
o% 7 defined in Appendix A by equations (A13) and
(A17).
The remaining term in (24), averaged over gauge po-
sitions, is
(ca,ng)x = (R4 Rar) (26)

which is computed for the model in Appendix A, with
the result given in equation (A25). Relative sampling
error for the two cases studied in the previous subsec-
tion for randomly placed gauges is shown in Figure 6

Satellite / Gauge-Array Comparison

150 YT T T
. 1* % 1° box
. rangdom gauges
100 |-
— 2.5° x 2.5* box
X I random gauges
o4
—
g
g c e .
° s .
™ 2.5 2.5° box
| evenly spaced
gauges
o b st s cagl il
0.01 Q.1 1 10
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Figure 6. Model predictions of relative sampling error
for comparison of a single satellite overflight over circu-
lar areas equivalent to 1° x 1° and 2.5° x 2.5° boxes con-
taining 9 and 49 gauges respectively, similar in density
to that of the Oklahoma Mesonet. Smooth curves show
sampling error for gauges spaced as depicted in Fig-
ure 5, plotted as a function of the time interval T over
which the gauge data are averaged. Dotted curves show
sampling error averaged over all possible random place-
ments of the gauges within the areas. GATE model
parameters were used in the calculations.
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as dotted curves. As expected, when the gauge loca-
tions become more random, comparison error tends to
increase, and, perhaps less obviously, the optimal av-
eraging time increases as well, probably because of the
tendency for there to be larger gaps between the ran-
domly placed gauges.

4.4. [Aside:] A Classic Hydrological Problem

Rain-gauge arrays have long been used to estimate
the average rain rate Rar for a time period T over
an area A covered by the array. (Average rainfall is
given by TR 47.) It is interesting to note that the mean
squared error in the classic hydrological problem of de-
termining Rar with a gauge array is easily obtained
for the random-gauge case just discussed, using (25)
and (R;zg AT)x = aiT* as

V(Rog = Rarlihe = | Z=%2 )

which gives the approximate n—/ %_dependence on gauge
number found by Rudolf et al. [1994] in their studies,
and indicates that the coefficient of or/+/n they ob-
tained is predicted to be

2 _ 2 \Ll/2
(g~ Rar e = (L22A) 772 (o

the coefficient (07 — 6%1)'/2 /o7 depends solely on the
spatial correlation of the gauge data at averaging time
T. Physically plausible spatial correlations will always
produce coefficients between 0 and 1. Note that equa-
tion (28) is a consequence of equation (25) alone and
does not depend on the particular model we are using.
When the coefficient is calculated using the model for
a case analogous to the ones studied by Rudolf et al.
[1994], assuming a disk with area equal to that of a
2.5° x 2.5° grid box for monthly averaged gauge data,
the model with GATE parameters predicts a coefficient
value of 0.76, while with TOGA COARE parameters
the model predicts coefficients ranging from 0.88 to
0.93, depending on the case.

Rudolf et al. [1994] fitted their collective results for
relative mean absolute error for gauge arrays in Aus-
tralia, Germany, and the USA, to an approximate form
0.865 x o7/n%5% (neglecting a small additive constant
term). Since equation (28) is written for rms error
instead of mean absolute error, the coefficient 0.865
found by Rudolf et al. [1994] should be multiplied by
V/7/2 to be compared with the coefficient in (28), as
pointed out by McCollum and Krajewski [1998). Since

V/T/2x0.865 = 1.1 is greater than 1, the effects of spa-
tial correlation of the gauges predicted by (28) do not
seem to have shown up in the results obtained by Rudolf
et al. [1994]. This may indicate the presence of greater
than expected sampling error in the coefficient obtained
by Rudolf et al. [1994], possibly due to non-normality in
the distribution of the errors, or the influence of inho-
mogeneity effects on the statistics. Rudolf et al. [1994]
found that sampling error appeared to decrease slightly
faster with gauge number than n~1/2. This may be due
to the fact that the real gauge arrays studied by Rudolf
et al. [1994] were not randomly distributed, since gauges
in real arrays tend to be spaced a certain minimum dis-
tance apart, wheress the n~1/2 behavior derived above
depended on the randomness assumption.

4.5. Monthly Averages, Many Satellite Visits

It is clear from the above results that using rain-
gauge data to validate satellite estimates at the 10%
level requires averaging over more than one satellite
overflight of the gauges. We turn next to compar-
isons of monthly averaged gauge data with averages of
satellite data taken in the vicinity of the gauges dur-
ing the month. In this case the time interval T = 1
month is specified beforehand, and we investigate how
Osamp/ R changes with A, the area around the gauge(s)
over which the satellite data are averaged.

The low earth-orbiting satellites carrying microwave
instruments tend to revisit a location about once per
day, at least in lower latitudes, averaging about 30 visits
per month. To simplify our calculations, we assume
that a satellite visits a site at regular intervals At, and
that the visit times are given by

ti=to+(J-1DAL j=1,...,m. (29)
The satellite average to which the gauge average R is
compared is given by

Ro=— 3" Ralty). (30)
J=1

where R4(t) is defined in (4). Mean squared sampling
error is thus given by (12), taking into account the effect
of multiple satellite visits. In particular,

e = (R
) WA A BECH
i g

This can be simplified using the lagged covariance of
area-averaged rain rate c44(7), defined in Appendix A
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in {A31), and the identity

S fG-iy= 3 (m—lul)fw)  (32)

i=1 j=1 u=-m
to obtain
—iﬁ+2§f@-ﬁy (wAt),  (33)
Css = m A m e m AA ]

with 02 = caa(7 = 0). Because c44(7) falls off rapidly
for 7 > 1 day, (33) is well approximated by

Css R % [aﬁ + 2§:CAA(uAt)} . (34)

u=1

The cross term cgg for this case,
1 m
Cog =~ jZ_;wg(t,-)Ra» : (35)

can likewise be well approximated by

ceg ~ (Ry(0)R7) (36)

which is dealt with in equation (A19) of Appendix A.
Sampling error for multiple satellite visits during T =
1 month can therefore be calculated from

1 oo
Uszamp ~ 0%+E I:Ui +2 Z CAA(uAt):I —2car(b=10).

u=1
(37)
Model predictions for each of the terms in (37) are ob-
tained in Appendix A.

Figure 7 shows the relative sampling error for a typ-
ical sampling interval of At =1 day, and also for more
frequent visits, down to the interval At = 3 h being dis-
cussed for a new satellite system called the Global Pre-
cipitation Mission (GPM). The optimal area for satel-
lite averages being compared with a single rain gauge
over one month is quite large, of the order of a 2.5°
box for typical sampling intervals of once per day. As
the satellite visit interval becomes shorter, the optimal
area for averaging shrinks, to one smaller than a 1°
box for a GPM-like case. Note that a month of aver-
aging is still not sufficient for achieving comparisons at
the 10% level. Approximately 6 months are required
to reach that level for validation of a single satellite’s
estimates, or more gauges within the area are required.
With two gauges, for instance, the required averaging
time (not shown) drops to about 4 months. In a GPM-
like era with the equivalent of 3-hourly satellite visits to
a gauge site it may be possible to establish bias levels at
the 10% level in a single month with just a few gauges
in an area.
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Comparison Error for Monthly Averages
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Figure 7. Relative sampling error predicted by model
using GATE statistics for comparison of monthly av-
erages of data from a single gauge with averages of
all satellite estimates during the month for an area A
around the gauge. The satellite is assumed to visit
at intervals At. Satellites with microwave instruments
typically visit at intervals At &~ 24 h. A dashed line
indicates error at the 10% level.
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5. Time-Weighted Gauge Data

The comparison of long time averages of gauge data
with averages of satellite data in the previous section
used straightforward averaging of the gauge data. Sup-
pose one were to allow the weighting of the gauge data
to vary in time depending on how far away in time the
gauge observation is from a satellite overflight occur-
rence? In this section we look at a simplified version
of this proposition to obtain an estimate of how much
improvement in the validation procedure might be pos-
sible by using time-weighted averages of the gauge data.

As an example, assume that the gauge data are avail-
able at hourly intervals for a period H hours in length,
of the order of a month or more. The gauge data
are therefore provided as a sequence of hourly aver-
ages Rr(t;), T = 1h, j = 1,..., H, where Rp(t) is
the time-averaged gauge data over an interval T cen-
tered on time t, as defined in Appendix A in (A26).
The time-weighted gauge average is

H
Rgow = %J;wjm(tj) . (38)

The weighting must preserve the long-term mean rain
rate, so we require the weights w; to satisfy

H
Y wj=H. (39)
Jj=1

We expect the weights to emphasize gauge data taken
near the satellite observation times and de-emphasize
data taken far from the satellite observation times.

To simplify the problem, assume that the interval
between satellite visits, At, is an integral number of
hours, and that N satellite overflights occur during the
averaging period H. The satellite average rain rate is

1 N
=5 ZRA(tq) , (40)

where the satellite visit times are given by tg, ¢ =

; NV, at intervals 2,41 — tq At. The weights w;
must then be found that minimize the variance of the
scatter of Ry about Ry ,,,

a5 = ((Rs — Rgw)®) - (41)

samp,w
This is a standard minimization problem, requiring
minimization of (41) with the constraint (39) included
by adding it to Ugamp,w as a Lagrange multiplier term:

L=((Rs = Rgu)) = 5> ;. (42)

Optlmal Wetghts of Hourly Gauge Data
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Figure 8. Optimal weights of hourly gauge data for
comparison with averages of satellite data provided ev-
ery 24 h over a 126-km diameter area centered on the
gauge, assuming GATE statistics, for 6 days of satellite
data.

The factor (—2/H) has been included with the Lagrange
multiplier A for convenience.

The optimal weights w; are determined by the equa-
tions 9L/0w; =0, j=1,...,H, or

H Z cag(ts tJ)wJ'_—Z:cSS(tQ —t;)-A=0, (43)

ji=1 =1

with A determined by the constraint equation (39),
where the lagged gauge covariance terms cgg(t; — t;)
are provided in Appendix A by equation (A28), and
the lagged satellite-gauge covariance terms cgg(ty — t;)
are provided by equation (A30). Equations (43) are lin-
ear in the weights w; and can be solved using standa:d
methods. Once the w; are known, the value of awn w
can be computed from (41), using (33) for ((RZ)?). Ap—
pendix B gives some additional information about solv-
ing (43) for the weights and obtaining the sampling er-
TOT O w-

Figure 8 shows the optimal weights obtained using
GATE parameters for comparison of an area equivalent
to a 1° x 1° box with a single gauge at the center provid-
ing 1-h average rain rates, assuming that the satellite
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returns every 24 h. The calculation is done for a 6-day
period, and shows that once the “end effects” have sub-
sided the weights settle into a regular repeating pattern
for the interior hours. The optimal weights indicate, as
expected, that it is the hour of gauge data during which
the satellite visits that should be weighted most, con-
tributing about 25% to the weighted average (6.1/24).
The sampling error variance afmp,w, compared to what
it would have been with uniform weighting, 02, is re-
duced to about 60% of the unweighted error variance.

The amount of reduction in sampling error provided
by adding time-varying weighting depends on the area
A and the parameter values of the model, among other
factors. For instance, if the parameters in Table 1 for
MIT Cruise 1 are used, the error variance is only re-
duced to about 85% of the variance for uniform weight-
ing. The reduction in variance is larger, percentage-
wise, for smaller areas, but the error variance also gets
worse as the area shrinks, as shown in figure 4. It is
not clear that generalizations about the best approach
for satellite/gauge comparisons can be made, since it
depends so much on the characteristics of the data in
each case.

6. Discussion and Conclusions

Rain gauges provide such direct measurements of
rainfall that testing remote sensing estimates of rain-
fall against gauge observations is extremely attractive.
The high spatial and temporal variability of rain, how-
ever, makes comparisons of the two difficult. One of the
choices that must be made in such comparisons is how
much averaging of the gauge data and satellite data are
needed in order to reduce the “noisiness” of the compar-
isons to a level low enough that they can be informative.
A spectral model was used to examine some of these
questions because it captures one of the more subtle
statistical features of rain: the linking of characteristic
times for changes in areal averages to the size of the
averaging area. Although the spectral model parame-
ters were adjusted to fit the statistics of radar-derived
rain rates (rather than of gauge data) over two tropi-
cal oceanic regions, the model seems to capture many of
the statistical characteristics of gauge data as well. The
model parameters obtained from the fits to radar data
may lead to underestimates of the amount of small-scale
variability on time scales of a fraction of an hour and of
the amount of large-scale variability on time scales of a
week or more. Based on some limited experiments, it
is likely that increased small-scale variability will make
intercomparisons noisier, whereas increased large-scale
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variability will probably make intercomparisons more
informative.

The model indicates that comparisons of rain es-
timates from single satellite-instrument footprints in
the neighborhood of a single gauge are too noisy to
be of much use—a fact well documented in many ex-
aminations of such comparisons. If areal averaging of
the satellite data is used to reduce sampling noise, the
model indicates that there is an optimal averaging time
for the gauge data for best comparisons, and that the
optimal time increases with the area. With a single
gauge, however, the areas and times required are too
large to be practical.

The situation is improved when multiple gauges are
present in the area observed by the satellite during its
overflight. Even gauge densities as high as 1 per 1000
km? in a 2.5° x 2.5° box, however, are unlikely to bring
comparison errors down to the 10% level. Averaging
over multiple overflights of the gauges is required. For
a typical passive-microwave-instrument-bearing satel-
lite providing about 30 visits per month the optimal
averaging area around a single gauge is about that of
a 2.5° x 2.5° box, and time averaging over a substan-
tial part of a year is required to bring sampling errors
down to the 10% level. The optimal averaging area and
time decreases when more gauges are present. Multiple
satellites with similar instruments providing more than
1 visit per day can also decrease the averaging time re-
quired.

Finally, the improvements in satellite/gauge com-
parisons that might be possible if the gauge data are
weighted depending on their relationship in time to the
satellite overflight times indicates that substantial re-
duction in the scatter of the gauge and satellite averages
is possible using this technigue, though the amount of
improvement varies considerably with the situatiorn.

Appendix A: Details of Model
Calculations

Many of the results presented in this paper require
calculations of variances and covariances of spatial and
temporal averages of the rain-rate field based on the
point covariance function in equation (11) and the spec-
tral model in equations (16-18). By carrying out the
spatial averages over circular areas A (A = 7a?) in-
stead of the more traditional square areas, calculations
are made much simpler. A number of results useful in
carrying out the calculations in a numerically efficient
manner are collected in this appendix. Both the alge-
braic and numerical results presented in this paper were
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obtained with the help of Mathematica software [v. 4;
see Wolfram, 1999] on a Macintosh computer.

To simplify notation, define the instantaneous area-
averaged rain rate (identical to equation 4) at time ¢
as

Ra(t) = % /A PxR(x,1) | (A1)

the time-averaged rain rate for a gauge located at a
point b relative to the center of the area A as

1 (772
Re)=7 [ @Ry, (A2
T J_ 72
and the area-time averaged rain rate as
Rar = — / d?x / dtR(x,t).  (A3)
T/2

We give as an example some of the steps needed in
obtaining a simple integral expression for the variance
of Ry,

o4 ((R4)?)
1
(7 [ #x [ @YR&OR,0)
JRIKS
— | d°x | d°ye(x~y,0
el Pl M ( )

using equation (11). Substituting equation (16) we ob-

tain
1 -
a4 = ol / dzx/ d%y (2m)~%/2

x / &k / dw e* Vg, w) . (A6)

(A4)

f

(A5)

Since &(k, w) does not depend on the direction of k, the
areal integrals can be done using

/dﬁxeikx —
A

where J,(z) is the Bessel function of the first kind [see,
for example, Dwight, 1961], and the integral over w in
(A6) with &(k,w) in (17) gives

a 27
/ rdr dethreosé
0 0

2ra®J, (ka)/(ka) , (AT)

o0
/ dw é(k,w) = TFTy . (A8)
)
After some algebra, one obtains from (A6)
! oo 2
ot = D0 [Tdk Jik) (A9)

a? Jy

v(k/a)

with the definitions

% = TA+v)vn, (A10)
= a/ly, (A11)

and
v(z) = (1+28)H. (A12)

The variance of Rp(b) defined in (A2), which does
not depend on position b, can be calculated with an
approach similar to the one above, yielding

o = (RP) (A13)
2% / dk —7 (k hik;u), (A1)
with
l u=T/r (A15)
and
hik;u)=1- ﬁ[l —e~wk)] (A16)

Likewise, the variance of Rar defined in (A3) can be
calculated to be
ohr = (R3r)
8y [“dk Jz(k)
ue? Jy k v(k/a)
A number of covariances are also needed, and these
are calculated in a manner similar to the example given

above. The covariance of R4 (t = 0) with a gauge aver-
age Rr(b) is given by

(A17)

——<h{k/a;u). (A18)

car(b) = (RL4Rr(b (A19)
% [ le(k Jo(Bk/e)
ua® v¥(k/a)
x [1- e—(u/ﬁ)v(k/a)] (A20)
with
B=b/Lo. (A21)

The covariance of time averages of gauge data for two
gauges separated by a distance b is given by

(Rr(b)Ry(0))

2y kJo(Bk
= 0/ dk °(k) hk;u) .

The covariance of spatial averages with space-time av-
erages needed for equation (26) is given by

(A22)
(A23)

M

crr(b)

CA AT = <Rf4Rf4T) (A24)
_ 8% [Ydk (k)
T wa?), k vik/a)

x [1— e~ (w/2vk/a)) — (A25)
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The calculation of optimal time-dependent weighting
of gauge data for comparison with satellite estimates re-
quires formulas for the lagged covariance of gauge aver-
ages and satellite areal averages. First, define the gauge
average centered around time £y as

1 [T/
Rr(t)= 7 / d RO G0+,

(A26)

The covariance of two gauge averages with averaging
interval T lagged by time T is given by

err(r;T) = (Rp(T)Rp(0) (A27)
276 o« e_lT/Tolv(k)
w2 Jo v3(k)
x sinh?[uv(k)/2] , (A28)

valid for |7| > T. The lagged covariance of an instan-
taneous average over a circular area A at t = 0 with a
gauge average lagged by 7 is given by

(R4 (0)Ry (7)) (A29)

Aty [ Jy(k)eIm/molv0k/)

ua? Jg v¥(k/a)
x sinhfuv(k/a)}/2],

car(;T) =

(A30)

valid for |r| > T/2. Finally, the covariance of instan-
taneous area-averaged rain rate separated by a time in-
terval 7 is given by

caa(r) = (Ri(m)R,(0) (A31)
4y [Pdk JE(K)
T 02 Jy kv(k/a)

x e-IT/mlvk/a)  (A39)

Appendix B: Optimal Weight Solution

In section 5 of the paper equations (43) for the opti-
mal weights of gauge data are obtained. They are fairly
simple to solve for the weights using standard linear al-
gebra methods. We present here a brief description of
the approach we have used.

Rewrite equations (43) in a form amenable to meth-
ods for solving sets of simultaneous linear equations by
defining the weight vector w,

(w); =w;, (B1)
the symmetric covariance matrix,
(Cisr = ceglty = t5) (B2)

15

and the vector defined by the middle term of (43),
summed over all satellite overflight times, as

L&
)= D coglte = t5) - (B3)

g=1

It is also convenient to introduce a vector conmsisting
entirely of 1’s,

1); =1

Using the above definitions, equation (43) can be writ-
ten in vector notation as

j=1,...,H. (B4)

HlCw—d—- =0, (B5)

with the constraint equation (39) for w written as

1'w=H, (B6)

where the superscript T indicates matrix transpose
(e.g., w-d = w'd). Equation (B5) is readily solved
for the weights as

w=HC1(d+l), (B7)

where ) is determined by the constraint equation (B6)
and solution (B7) to be

1-17Cd
Y= Tre (B9

The solution requires obtaining the inverse matrix ct,
which is a standard numerical problem.

Once the weights are obtained, the sampling error
for the difference of the satellite average from the time-
weighted gauge average can be obtained from (41) as

e = ((RO?) + ((Rgw)®) — 2ReRg )
(RO + H?>w'Cw - 2H 'w'd

= e +H W (d+A1) -2H 'w'd

= cut+A-Hlw'd (B9)

fl

using equations (38), (B2), and (B3) for the first step
above, equation (B5) for the second step, and the con-
straint equation (B6) for the last step. Equation (33)
provides an exact expression for ¢g.
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